GAMES ON BOOLEAN ALGEBRAS OF UNCOUNTABLE LENGTH

M. Kurilić and B. Šobot

Department of Mathematics and Informatics, Faculty of Science, Novi Sad

February 1, 2009

Cut-and-choose games on Boolean algebras

Played by two players, White and Black, on a complete Boolean algebra \mathbb{B}. Games of type (κ, λ, μ) are played in κ-many moves:

```
First White chooses p\in\mathbb{B}
In }\alpha\mathrm{ -th move:
White cuts p into \lambda pieces (i.e. chooses a maximal antichain . A\alpha below
```

p of cardinality at most λ)
Black chooses $<\mu$ of those pieces (i.e. a subset $B_{\alpha} \subseteq A_{\alpha}$ of cardinality

Cut-and-choose games on Boolean algebras

Played by two players, White and Black, on a complete Boolean algebra \mathbb{B}. Games of type (κ, λ, μ) are played in κ-many moves:

First White chooses $p \in \mathbb{B}^{+}$.
In α-th move:
White cuts p into λ pieces (i.e. chooses a maximal antichain A_{α} below
p of cardinality at most λ)
Black chooses $<\mu$ of those pieces (i.e. a subset $B_{\alpha} \subseteq A_{\alpha}$ of cardinality

Cut-and-choose games on Boolean algebras

Played by two players, White and Black, on a complete Boolean algebra \mathbb{B}. Games of type (κ, λ, μ) are played in κ-many moves:

First White chooses $p \in \mathbb{B}^{+}$.
In α-th move:
White cuts p into λ pieces (i.e. chooses a maximal antichain A_{α} below
p of cardinality at most λ)
Black chooses $<\mu$ of those pieces (i.e. a subset $B_{\alpha} \subseteq A_{\alpha}$ of cardinality

Cut-and-choose games on Boolean algebras

Played by two players, White and Black, on a complete Boolean algebra \mathbb{B}. Games of type (κ, λ, μ) are played in κ-many moves:

First White chooses $p \in \mathbb{B}^{+}$.
In α-th move:
White cuts p into λ pieces (i.e. chooses a maximal antichain A_{α} below p of cardinality at most λ)

Cut-and-choose games on Boolean algebras

Played by two players, White and Black, on a complete Boolean algebra \mathbb{B}. Games of type (κ, λ, μ) are played in κ-many moves:

First White chooses $p \in \mathbb{B}^{+}$.
In α-th move:
White cuts p into λ pieces (i.e. chooses a maximal antichain A_{α} below p of cardinality at most λ)
Black chooses $<\mu$ of those pieces (i.e. a subset $B_{\alpha} \subseteq A_{\alpha}$ of cardinality $<\mu)$.

A special case: $\lambda=\mu=2$

In the α-th move White chooses $p_{\alpha} \in(0, p)_{\mathbb{B}}$ and Black chooses $i_{\alpha} \in\{0,1\}$.

A special case: $\lambda=\mu=2$

In the α-th move White chooses $p_{\alpha} \in(0, p)_{\mathbb{B}}$ and Black chooses $i_{\alpha} \in\{0,1\}$.
Thus they obtain a sequence $\left\langle p_{0}^{i_{0}}, \ldots, p_{\alpha}^{i_{\alpha}}, \ldots\right\rangle$, where
$q^{i}=\left\{\begin{array}{cc}q & \text { if } i=0 \\ p \backslash q & \text { if } i=1\end{array}\right.$

The game $\mathcal{G}_{\text {dist }}$

Jech in [1] defined a game of type $(\omega, 2,2)$: White wins the game $\left\langle p, p_{0}, i_{0}, \ldots, p_{n}, i_{n}, \ldots\right\rangle$ iff

$$
\bigwedge_{n<\omega} p_{n}^{i_{n}}=0
$$

The game $\mathcal{G}_{\text {dist }}$

Jech in [1] defined a game of type $(\omega, 2,2)$: White wins the game $\left\langle p, p_{0}, i_{0}, \ldots, p_{n}, i_{n}, \ldots\right\rangle$ iff

$$
\bigwedge_{n<\omega} p_{n}^{i_{n}}=0
$$

Theorem
The following conditions are equivalent:
(a) \mathbb{B} is not $(\omega, 2)$-distributive;
(b) In some generic extension $V_{\mathbb{B}}[G]$ there is a new function $f: \omega \rightarrow 2$;
(c) White has a winning strategy in $\mathcal{G}_{\text {dist }}$ played on \mathbb{B}.

A generalization

Dobrinen in [2] generalized it to a game $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ of type (κ, λ, μ) : White wins iff $\bigwedge_{\alpha<\kappa} \bigvee B_{\alpha}=0$.
\square

(a) \mathbb{B} is not (κ, λ, μ)-distributive;
(b) there is $f: \kappa \rightarrow \lambda$ in some generic extension $V_{\mathbb{B}}[G]$ such that no

(c) White has a winning strategy in $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ played on \mathbb{B}; (d) \mathbb{B} is not $\left(\left(\lambda^{<\mu}\right)^{<\kappa}, \lambda, \mu\right)$-distributive.

Theorem
White has a winning strategy in $\mathcal{G}_{\text {dist }}(k, 2,2)$ played on \mathbb{B} iff \mathbb{B} is not $(\kappa, 2)$-distributive.

A generalization

Dobrinen in [2] generalized it to a game $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ of type (κ, λ, μ) : White wins iff $\bigwedge_{\alpha<\kappa} \bigvee B_{\alpha}=0$.

Theorem
$(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$, where
(a) \mathbb{B} is not (κ, λ, μ)-distributive;
(b) there is $f: \kappa \rightarrow \lambda$ in some generic extension $V_{\mathbb{B}}[G]$ such that no $g: \kappa \rightarrow[\lambda]^{<\mu}$ in V is such that $f(\alpha) \in g(\alpha)$ for all $\alpha<\kappa$;
(c) White has a winning strategy in $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ played on \mathbb{B};
(d) \mathbb{B} is not $\left(\left(\lambda^{<\mu}\right)^{<\kappa}, \lambda, \mu\right)$-distributive.

A generalization

Dobrinen in [2] generalized it to a game $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ of type (κ, λ, μ) : White wins iff $\bigwedge_{\alpha<\kappa} \bigvee B_{\alpha}=0$.

Theorem
$(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$, where
(a) \mathbb{B} is not (κ, λ, μ)-distributive;
(b) there is $f: \kappa \rightarrow \lambda$ in some generic extension $V_{\mathbb{B}}[G]$ such that no $g: \kappa \rightarrow[\lambda]^{<\mu}$ in V is such that $f(\alpha) \in g(\alpha)$ for all $\alpha<\kappa$;
(c) White has a winning strategy in $\mathcal{G}_{\text {dist }}(\kappa, \lambda, \mu)$ played on \mathbb{B};
(d) \mathbb{B} is not $\left(\left(\lambda^{<\mu}\right)^{<\kappa}, \lambda, \mu\right)$-distributive.

Theorem
White has a winning strategy in $\mathcal{G}_{\text {dist }}(\kappa, 2,2)$ played on \mathbb{B} iff \mathbb{B} is not ($\kappa, 2$)-distributive.

The game $\mathcal{G}_{\text {ls }}(\kappa)$

$\mathcal{G}_{\text {ls }}(\kappa)$ is the game of type $(\kappa, 2,2)$ in which White wins the game $\left\langle p, p_{0}, i_{0}, \ldots, p_{\alpha}, i_{\alpha}, \ldots\right\rangle$ iff

$$
\bigwedge_{\beta<\kappa} \bigvee_{\alpha \geq \beta} p_{\alpha}^{i_{\alpha}}=0
$$

Existence of a winning strategy for Black

Theorem
If \mathbb{B} is a complete Boolean algebra and $\kappa \geq \pi(\mathbb{B})$, then Black has a winning strategy in the game $\mathcal{G}_{\mathrm{ls}}(\kappa)$ played on \mathbb{B}, where

$$
\pi(\mathbb{B})=\min \{\lambda: \mathbb{B} \text { has a dense subset of cardinality } \lambda\} .
$$

Existence of a winning strategy for Black

Theorem

If \mathbb{B} is a complete Boolean algebra and $\kappa \geq \pi(\mathbb{B})$, then Black has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\kappa)$ played on \mathbb{B}, where

$$
\pi(\mathbb{B})=\min \{\lambda: \mathbb{B} \text { has a dense subset of cardinality } \lambda\}
$$

Theorem
If a complete Boolean algebra \mathbb{B} contains a λ-closed dense subset $D \subseteq \mathbb{B}^{+}$, then for each infinite cardinal $\kappa<\lambda$ Black has a winning strategy in the game $\mathcal{G}_{\mathrm{ls}}(\kappa)$.

Existence of a winning strategy for White

Theorem
$(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$, where
(a) In some generic extension, $V_{\mathbb{B}}[G], \kappa$ is a regular cardinal and the cardinal $\left(2^{\kappa}\right)^{V}$ is collapsed to κ;
(b) White has a winning strategy in the game $\mathcal{G}_{\mathrm{ls}}(\kappa)$ played on \mathbb{B}; (c) in some generic extension, $V_{\mathbb{B}}[G]$, the sets $\left({ }^{\kappa} 2\right)^{V}$ and $\left({ }^{<\kappa} 2\right)^{V}$ are of the same size.

Existence of a winning strategy for White

Theorem
$(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$, where
(a) In some generic extension, $V_{\mathbb{B}}[G], \kappa$ is a regular cardinal and the cardinal $\left(2^{\kappa}\right)^{V}$ is collapsed to κ;
(b) White has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\kappa)$ played on \mathbb{B}; (c) in some generic extension, $V_{\mathbb{B}}[G]$, the sets $\left({ }^{\kappa} 2\right)^{V}$ and $\left({ }^{<\kappa} 2\right)^{V}$ are of the same size.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$ need not be true; an example: $\mathbb{B}=\operatorname{Col}\left(\aleph_{1}, \aleph_{\omega+1}\right)$ in a model of $\mathrm{MA}+2^{\aleph_{0}}=\aleph_{\omega+1}$, for $\kappa=\aleph_{\omega}$.

Existence of a winning strategy for White (continued)

Corollary
White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\omega)$ played on \mathbb{B} iff forcing by \mathbb{B} collapses \mathfrak{c} to ω in some generic extension.

If White has a winning strategy in $\mathcal{G}_{1 \mathrm{~s}}(\kappa)$, then $\kappa \in\left[\mathfrak{h}_{2}(\mathbb{B}), \pi(\mathbb{B})\right)$, where $\mathfrak{h}_{2}(\mathbb{B})=\min \{\lambda: \mathbb{B}$ is not $(\lambda, 2)$-distributive $\}$
\square
Ascume that 0^{F} does not exist, and let \mathbb{B} be a complete Boolean algebra and $2^{<\mathfrak{h}_{2}(\mathbb{B})}=\mathfrak{h}_{2}(\mathbb{B})$. Then White has a winning strategy in $\mathcal{G}_{1 \mathrm{~s}}\left(\mathfrak{h}_{2}(\mathbb{B})\right)$ iff forcing by \mathbb{B} collapses $2^{\mathfrak{h}_{2}(\mathbb{B})}$ to $\mathfrak{h}_{2}(\mathbb{B})$ in some generic extension.

Existence of a winning strategy for White (continued)

Corollary
White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\omega)$ played on \mathbb{B} iff forcing by \mathbb{B} collapses \mathfrak{c} to ω in some generic extension.

If White has a winning strategy in $\mathcal{G}_{\text {ls }}(\kappa)$, then $\kappa \in\left[\mathfrak{h}_{2}(\mathbb{B}), \pi(\mathbb{B})\right)$, where

$$
\mathfrak{h}_{2}(\mathbb{B})=\min \{\lambda: \mathbb{B} \text { is not }(\lambda, 2) \text {-distributive }\} .
$$

Existence of a winning strategy for White (continued)

Corollary
White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\omega)$ played on \mathbb{B} iff forcing by \mathbb{B} collapses \mathfrak{c} to ω in some generic extension.

If White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\kappa)$, then $\kappa \in\left[\mathfrak{h}_{2}(\mathbb{B}), \pi(\mathbb{B})\right)$, where

$$
\mathfrak{h}_{2}(\mathbb{B})=\min \{\lambda: \mathbb{B} \text { is not }(\lambda, 2) \text {-distributive }\} .
$$

Corollary
Assume that 0^{\sharp} does not exist, and let \mathbb{B} be a complete Boolean algebra and $2^{<\mathfrak{h}_{2}(\mathbb{B})}=\mathfrak{h}_{2}(\mathbb{B})$. Then White has a winning strategy in $\mathcal{G}_{\text {ls }}\left(\mathfrak{h}_{2}(\mathbb{B})\right)$ iff forcing by \mathbb{B} collapses $2^{\mathfrak{h}_{2}(\mathbb{B})}$ to $\mathfrak{h}_{2}(\mathbb{B})$ in some generic extension.

Playing on a singular cardinal

Theorem
If White has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\kappa)$ played on \mathbb{B}, then White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\operatorname{cf}(\kappa))$ as well.

The converse of neither of two theorems is true (an example: $\operatorname{Col}\left(\aleph_{0}, \aleph_{1}\right)$ under CH$)$.

Playing on a singular cardinal

Theorem
If White has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\kappa)$ played on \mathbb{B}, then White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\mathrm{cf}(\kappa))$ as well.

Theorem
If Black has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\operatorname{cf}(\kappa))$ played on \mathbb{B}, then Black has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\kappa)$ as well.

Playing on a singular cardinal

Theorem
If White has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\kappa)$ played on \mathbb{B}, then White has a winning strategy in $\mathcal{G}_{\mathrm{ls}}(\mathrm{cf}(\kappa))$ as well.

Theorem

If Black has a winning strategy in the game $\mathcal{G}_{\text {ls }}(\operatorname{cf}(\kappa))$ played on \mathbb{B}, then Black has a winning strategy in $\mathcal{G}_{\text {ls }}(\kappa)$ as well.

The converse of neither of two theorems is true (an example: $\operatorname{Col}\left(\aleph_{0}, \aleph_{1}\right)$ under CH$)$.

Prescribing when a player has a winning strategy

Theorem

(GCH) For each set S of regular cardinals there is a complete Boolean algebra \mathbb{B} such that
(a) White $(\mathbb{B})=S$;
(b) Black $(\mathbb{B})=\operatorname{Card} \backslash(S \cup \omega)$.

A Boolean algebra on which the game is undetermined

If S is a stationary subset of κ : $\diamond_{\kappa}(S)$: There are sets $A_{\gamma} \subseteq \gamma$ for $\gamma \in S$ such that for each $A \subseteq \kappa$ the set $\left\{\gamma \in S: A \cap \gamma=A_{\gamma}\right\}$ is a stationary subset of κ. $E(\kappa)$-the (stationary) set of all ordinals $<\kappa^{+}$of cofinality κ. Theorem
For each regular κ satisf
κ^{+}-Suslin tree $\langle T, \leq\rangle$ suc
algebra $\mathbb{B}=$ r.o. $(\langle T, \geq\rangle)$.

A Boolean algebra on which the game is undetermined

If S is a stationary subset of κ :
$\diamond_{\kappa}(S)$: There are sets $A_{\gamma} \subseteq \gamma$ for $\gamma \in S$ such that for each $A \subseteq \kappa$ the set $\left\{\gamma \in S: A \cap \gamma=A_{\gamma}\right\}$ is a stationary subset of κ. $E(\kappa)$-the (stationary) set of all ordinals $<\kappa^{+}$of cofinality κ.

Theorem

For each regular κ satisfying $\kappa^{<\kappa}=\kappa$ and $\diamond_{\kappa^{+}}(E(\kappa))$, there is a κ^{+}-Suslin tree $\langle T, \leq\rangle$ such that the game $\mathcal{G}_{\text {ls }}(\kappa)$ is undetermined on the algebra $\mathbb{B}=$ r.o. $(\langle T, \geq\rangle)$.

References

[1] T. Jech, More game-theoretic properties of Boolean algebras, Ann. Pure and App. Logic 26 (1984), 11-29.
[2] N. Dobrinen, Games and generalized distributive laws in Boolean algebras, Proc. Amer. Math. Soc. 131 (2003), 309-318.
[3] M. S. Kurilić, B. Šobot, A game on Boolean algebras describing the collapse of the continuum, to appear in Ann. Pure Appl. Logic. [4] M. S. Kurilić, B. Šobot, Power collapsing games, Journal Symb. Logic 73 (2008), no. 4 1433-1457.

